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The thermal lattice BGK model is a recently suggested numerical tool aiming 
at solving problems of thermohydrodynamics. The quality of the lattice BGK 
simulation is checked in this paper by calculating temperature profiles in the 
Couette flow under different Eckert and Math numbers. A revised lower order 
model is proposed to improve the accuracy and the higher order model is 
proved to be advantageous in this respect, especially in the flow regime with a 
higher Mach number. 
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1. I N T R O D U C T I O N  

The latt ice B G K  method  can be viewed as the latest  development  of  the 
latt ice Bol tzmann (LB) method ,  ~2) which is a der ivat ion  of  the latt ice gas 
a u t o m a t a  ( L G A )  model  (1) for the s imulat ion of  fluid dynamics.  Such a 
development  was achieved by in t roducing  the simple B h a t n a g a r - G r o s s -  
K r o o k  collision ope ra to r  (6) into the latt ice Bol tzmann equat ion (LBE).  (3-5) 
Al though this s ingle- t ime-relaxat ion approx ima t ion  (STRA)  made  on the 
coll ision term of  the discrete kinetic equat ion  looks oversimplified, latt ice 
B G K  models  amazingly  reproduce  the complexit ies of fluid flows. This has 
been the subject of  several studies. (7-9) 

Recently, lat t ice B G K  models  in which thermal  effects are included 
were explored by a number  of  authors.  (1~ These models  are 
establ ished by ,dea l ing  with the conservat ion  of  part icle  kinetic energy non- 
trivially, a t rea tment  which can be realized with the use of  mult ispeed 
part icle  distr ibutions.  The employment  of  a composed  lattice is basically 
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required. Here, the composed lattice is defined as a lattice consisting of 
several sublattices whose link vectors have different moduli and/or different 
spatial rotations. For instance, Alexander et aL ~~ employed a composed 
hexagonal lattice in two-dimensional space which contains two hexagonal 
sublattices with one and two moduli and identical rotations for the link 
vectors. Others used the composed square lattice in D-dimensional space; 
see Fig. 3 for a 2D example. One may further divide those thermal lattice 
BGK models, within a parametrized equilibrium framework, into two 
classes: the lower order models (models of Alexander et al. ~~ and Qian 
and Orszag I t ~ ~) and the higher order model (model of Chen et al.~ ~3 i). The 
word "order" here refers to the order of the flow speed u in its expansion 
of the equilibrium particle distribution. The lattice kinetic equation used in 
all the numerical simulations with these models is 

Npki(x + Cpki, t + 1)  - -  Npki(X, t) = _ 1  ( Npki_ lv [eq]  ~ 
�9 " p k i  1 "C 

(1) 

Here, Npki denotes the particle distribution on the ith link of the pk  sub- 
lattice; cpki is the link vector and therefore the vector of the particle flight 
velocity. The r.h.s, of Eq. ( 1 ) indicates the use of STRA, and r is the relaxa- 
tion time period during which particle distributions approach equilibrium 
values. With the exception of McNamara and Alder's study, ~5~ in which 
the authors followed a formulation similar to the moment expansion 
method to decide the equilibrium particle distribution, NpE~ ql is usually 
written in the low-speed expansion up to the second (or third) order of u 
for the lower order models and fourth order for the higher order model. 
Correspondingly, lattice symmetries of various levels are required for these 
models, in order that the momentum and heat flux tensors can be 
expressed in an isotropic form in the macroscopic limit. Specifically, the 
nth-rank particle velocity-moment tensor defined as 

n components 

Tt,,) ,k~...r = ~ c,,k,,,.., c~,k~r (2) 
i 

is required to have an isotropic form up to n = 4 for the lower order models 
and n = 6 for the higher order model. The latter would prevent one from 
using the composed hexagonal lattice in 2D space and the F C H C  lattice in 
4D space, for that the highest rank of the isotropic velocity-moment tensor 
is four in both cases/141 

The higher order model is more accurate, which was demonstrated by 
the numerical measurement of decaying rates of the flow kinetic energy 
under different Mach numbers/131 In that case, the higher order model was 
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shown to be free from the deviations caused by the nonlinear terms hidden 
in the r.h.s, of the momentum equation of the modeled fluid. The purpose 
of this study is devoted, however, to the modeling of heat transfer with 
the thermal lattice BGK models. The investigation was carried out by 
measuring and comparing the temperature profiles in the Couette flows 
under different Eckert numbers and Mach numbers. Models based on the 
composed square lattice were used in all these calculations. Key issues of 
the thermal lattice BGK model will be briefly reviewed in the next section, 
and numerical experiments and their results will be described subsequently. 
The lower and higher order models used in this paper will be labeled as 
follows: 

�9 2D13VQ: Qian's lower order model, based on the 2D 13-1ink 
composed square lattice. 

�9 2DI3VC: A revised lower order model, based on the 2D 13-1ink 
composed square lattice. 

�9 2D16V: Chen's higher order model, based on the 2D 16-1ink 
composed square lattice. 

Discussions are confined to two-dimensional cases. Some concluding 
remarks are given in the last section. 

2. THERMAL LATTICE BGK MODELS 

2.1. Coordinates and Symmetries of the Composed Lattice 

The coordinates of link vectors of the square sublattices may be 

written, z~ components in D dimensions 

k ( + l ,  +I,..., + 1 , 0  ..... 0,0) (3) 

p components 

and permutations of this expression. Here, the number of nonzero com- 
ponents is p, so that the modulus of such a vector is Icpd = k v/p. It is 
important to know, in the process of hydrodynamic derivation, the 

"~1"~ which consists of the structure of the velocity-moment tensor 1pkg... r 
n-product of these link vectors. The odd-rank tensors vanish naturally by 
the definition [Eq. (2)] itself. The even-rank tensors, in particular second-, 
fourth-, and si~tth-rank tensors, can be written in D-dimensional space, 

(2) __ (~ 
T pk~,q - -  ~ pk cq3  

(41 _ _  T - q~pk(~o, a3r,~ + ~ ' ~ # ~  + ~ , ~ a r )  (4) Tpka#r6 -- ~lpk ~llrO + 

TI61 - A . + I2 pk( 3~# Y~,~r162 + ...) + C" pk~ %a pk~,~r162 -- pkafly~,r162 pK)re,.fl}'t~(c, o tX T(4) . . . . )  
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Here, ~i is the Kronecker tensor and T is its higher order version, which, 
by definition, is 1 if all the subscripts are the same and 0 otherwise. The 
ellipses stand for terms which can be obtained by permuting the indices of 
the foregoing terms. Numerical values of parameters such as ~gpk, Opk,..-, Opk 
are listed ~12" ~3) for one, two, and three dimensions. The way to make the 
macroscopic flux tensors isotropic is to tune the particle populations on 
different sublattices properly so that the sum of anisotropic parts, parts 
that are related to qJpk, Apk, and t2pk, vanishes as a total effect. 

2.2. Equilibrium Particle Distribution 

When the flow speed of the modeled fluid is controlled to be much 
smaller than the flight speed of particles, the local equilibrium particle 
distribution can be expanded around the uniform equilibrium state. In a 
lattice Boltzmann formulation, due to the flexibilities in residence and 
number of particles and the parity invariance of the square lattice, the low- 
speed expansion can be generically formulated as follows: 

N~qi ] = apk + Mpk(C,ki~,u~,) + GpkU 2 + Jpk(Cpki,,u,,) 2 

+ Qpk(Cpki,,U~,) U 2 + Hp~(Cpki,,u,,) 3 

-'1- Rpk( Cpki~Ua) 2U 2 -']- Spku 4 "}- O(U 5) (5) 

For the lower order models, terms whose orders are higher than u 2 may be 
cut off, or one of the third-order terms can be retained to make the energy 
equation more accurate on the Euler level/~2~ Parameters of the expansion 
will depend on two of the locally conserved quantities, namely density p 
(~'~_~pkiNpki) and thermal energy e ( - l  = ~_ ~pk~ Npki ICpki- U12). Furthermore, 
this dependence may be described in the form: 

2 
X p k = p  Y'. xpk, e I (6) 

I=0 

Here, Xpk may represent any one of Apk, Mpk ..... Spk, SO that Xpkl is actually 
apk~, mp~,~ ..... spk/. Various constraints are directly imposed on Xpk~, with 
which definitions of the conserved quantities can be justified, and the 
vanishing of the anisotropic parts of macroscopic flux tensors and the non- 
existence of unphysical artifacts in the macrodynamic equations can be 
ensured in the meantime. The number of such constraints is usually smaller 
than that of the parameters, so that the specification of a thermal lattice 
BGK model always involves some arbitrariness. r ts~ This implies that 
some optional constraints may be employed either to minimize the higher 
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rank anisotropic effects or to improve the accuracy for the model, which 
will be made clear in the following text. 

2.3. M a c r o s c o p i c  Flux Tensors and Transpor t  Coe f f i c ien ts  

In the hydrodynamic derivation process for the lattice BGK models, 
the lattice BGK equation, Eq. (1), is first Taylor expanded into a con- 
tinuous form in the long-wavelength, low-frequency limit. Macrodynamic 
equations for the conserved quantities can be obtained subsequently by 
using the multiscale technique, which is a perturbative formulation method. 
The small quantity for the perturbation is chosen to be proportional to 
the local Knudsen number and is denoted as e. Correct forms of the macro- 
dynamic equations are guaranteed by correct expressions of the macro- 
scopic flux tensors, which are again ensured by the aforementioned con- 
straints imposed on the parameters of the low speed expansion of the 
equilibrium particle distribution. The resulting momentum flux tensors on 
the Euler (e) order and Navier-Stokes (e 2) order are 

- / ( 0 )  ~r(O ) ~ ~ - -  2 =# ----Z , ,  pk~pk~=,.pk~#-- pe~=p + pu=u# (7) 
pki 

1 (~) FI:~'=(l--2"~);Nt,k,C~,kt~,Ct, ki/3 
I ] 

= - - - ~ p e  O#u=)- - -D (O,,u,) O=#] (8) 

Here Argo) is the equilibrium and N m is the nonequilibrium part of the * pki pki 
particle distribution. Heat flux vectors on different orders may be expressed 
a s  

1 q(O) - (o) = = ~ L N~ki  I cpki --  u 12 (Cpki~, -- U~,) = 0 (9)  
pki 

q(2'=~(1--~);g(plk~lC,ki--Ul2(Cpki=--U=) 

- 2 ( D + 2 )  (10) 

Transport coefficients and the state equation of the modeled fluid can be 
easily identified from these formulas; for example, the shear viscosity and 
the heat conductivity read, respectively, 
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~u=-~pe  z -  (11) 

x = ~ p e  3 -  (12) 

Note that the accuracies of Eqs. (7)-(10) are different for models of dif- 
ferent orders. For the lower order models, H ~  ~ and q~O) are accurate up to 
eu 3 and eu 2 orders, and H~l; and q ~  up to e'-u 2 and e2u orders. For the 
higher order model, the accuracies of the corresponding quantities are 
upgraded to eu 5, eu 4, e'-u 4, and e2u 3 orders. 

3. N U M E R I C A L  I N V E S T I G A T I O N S  

3.1. Couet te  F low 

The flow system is an extremely simple one, consisting of one moving 
boundary, one boundary at rest, and the fluid layer in between (Fig. l ). In 
the case that the two parallel walls have identical temperatures, the dis- 
sipative work of the viscous force will still lead to a parabolic temperature 
distribution inside the fluid layer. This should serve as a good test case for 
checking the lattice BGK modeling of heat transfer, because the contribu- 
tion of heat conduction is reduced, so that deviations in the viscous work 
would turn up if there were any. On the contrary, if the temperature 
gradient is too strong, deviations in the viscous work would be difficult to 
detect, as they are orders higher than the heat conduction term. 

From the viewpoint of dimensional analysis, the heat transfer in such 
a system is governed by two dimensionless parameters, namely the Prandtl 
number and the Eckert number. As the Prandtl number of the lattice BGK 

YL. 
x 

UI T1 

T0 

Fig. 1. Velocity and temperature distributions in Couette flow. 
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modeled fluid has an invariable unit value, (12"15) the Eckert number, 
defined as 

E= U~ (13) 
cp( T1 - To) 

becomes a decisive parameter. The definition of the Eckert number tells 
that it is a measure of the ratio between the heat due to friction and that 
due to conduction. Note that this number becomes infinite when viscous 
heating prevails, and is small when the heat conduction dominates. The 
analytical solution of the steady temperature distribution in the transverse 
direction of the channel can be obtained by directly solving the Navier-  
Stokes equations with the proper boundary conditions, which read 

TI ~ T o :  

Z 1 ~ To; 

T - T o = Y ( T I  - 0)-e--~-K ~ ~t - - ~ )  (14) 

T--  T0 =~2x 

Hence in the following calculations, numerical results will be normalized 
with (T t - To) if T~ --/: To or with/~ U~/2K otherwise. The linear distribution 
of the flow velocity will not be depicted here, as it can always be obtained 
as long as the steady stage of flow is reached. 

3.2. Results of Qian's Model (2D13VQ) 

The model used here is a typical lower order thermal lattice BGK 
model on the composed square lattice. Conditions for the numerical 
calculation are as follows: lattice size 64x 32, time step 10,000, moving 
boundary at y /H = 1, and non-slip and fixed-temperature boundary condi- 
tions. The analytical solutions and the numerical results are compared with 
each other in Fig. 2, from which one may conclude that the numerical 
calculation is accurate only when the Eckert number is small enough, that 
is, when the temperature distribution is mainly controlled by the heat con- 
duction between the two walls. Notice that the Mach number Ma = U~/as, 
where as is the adiabatic sound speed, was kept smaller than 0.05 for all 
three cases, in order that deviations caused by higher order terms, terms 
which are similar to those aforementioned nonlinear terms in the r.h.s 
of the momentum equation of the nonthermal lattice BGK modeled fluid 
and whose effects are highly Mach number dependent, contribute only 

822/81/I-2-6 
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Fig. 2. Temperature profiles in Couette flows under different Eckert numbers. Solid lines are 
analytical solutions and crosses are the numerical results calculated by using Qian's thermal 
lattice BGK model. 

diminishing effects in the energy transport  equation. It is also clear, because 
of  this low-Mach-number  condition, that errors occurring under large 
Eckert number  arise solely from the existence of  deviation terms at least of  
the same order as the viscous work terms. 

It becomes crucial to derive the structures of  the hidden terms in the 
energy equation of  the modeled fluid, since one may then disclose the 
source of  the errors and improve the quality of  lower order modeling if 
possible. In particular, the structures of  these terms were derived under two 
optional constraints, 

Y', ~pk geko = O, ~ r gt, k t = 0 (16) 
pk pk 

~,ApkLko=O, ~,Apk.~kl----0 (17) 
pk pk 

As stated above, these optional constraints were used to eliminate the 
influence of  the higher rank anisotropic parts. Then the hidden terms may 
be explicitly written out in five parts, t~-) 
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1 
Part h ~O,,(pu~-u~,) (18) 

Part 2: 0r + ~2O~p) Op(peu~up) + (~3 + ~4O~p) Op(pu~up)] 

Part3:  -O~{[It(O~,up+Opu~,+OyurJ~, p) 
(18) 

+ ~ (1- ~b-~ ,~p) o~(pu~upu~) ] up} 
Part 4: Oa{(163fl[ /lf-4'2]Ofl(puau~)] + (26qfl[ A[4"2]Op(peuau~)]} 

1 
P a r t 5 : a ( 1 - - ~ p ) O y ( p u ~ u p u y ) O ~ u ~  

Here, zl E4"'-1 is used to represent the sum of permuting products of the 
Kronecker tensors, which has been written as (6~p Y~,~ +...) in Eq. (4). The 
nonlinear response coefficients are defined by 

Xpk / \  
(19) 

I2 " 1 

As the definitions of ~ and ~,_ involve ~p~, the contribution of part 4 
would be anisotropic. It is obvious that there exist terms of Ou 2 order in 
parts 2 and 3, which result from the higher order structures of the Euler- 
level energy and the Navier-Stokes-level momentum equations. Since these 
terms are of the same order as the normal term for viscous work in the 
energy equation, their combined effects could be the main contributions to 
errors under large Eckert number. Such errors, as discussed so far, will be 
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less relevant to the Mach number, because none of the higher order terms 
in parts 1 and 5, which do bear the Mach number dependence, contribute, 
significantly when this dimensionless number is set low. 

3.3. Results of a Revised Lower Order Model  (2D13VC)  

The quality of the lower order thermal lattice BGK model may be 
improved by making changes in the optional constraints stated in the 
previous section. Actually, one may relax one such constraint, Eq. (17), and 
impose two new constraints as follows: 

1 
2 ~Opk gpko = 0 ,  Z ~Opk gpkl = D (20) 
pk pk 

1 
20pkJpko = O, Z Op~jpk, = -~ (21) 
pk pk 

Note that the satisfaction of Eq. (16) can still be ensured if the stationary 
particles, which reside in the 00 sublattice, are included. This actually is the 
case for the two dimensional, 13-1ink thermal lattice BGK models used in 
the current situation. 

With the use of the definition of the shear viscosity in Eq. (11 ), it can 
be shown that Eqs. (20) and (21) will lead to the cancellation of terms of 
02u 2 order in parts 2 and 3 of Eqs. (18). The residual pertaining to heat 
conduction is proportional to u2a2(pe), which should be vanishingly small 
in the low-speed limit. Nevertheless, the relaxation of Eq. (17) will bring 
about an additional part of the anisotropic errors, which involves the 
lattice-symmetric parameter Apk and the higher order Kronecker tensor 
]c ,~r162 Note that no anisotropic errors would occur in the 2D13VQ model, 
because I2pk is zero in the two-dimensional space and Eq. (17) obviates 
another contribution. As Apk is a nonzero parameter in all the dimensions, 
the relaxation of Eq. (17) will certainly let one part of the anisotropic error 
play its role in the numerical calculation with the use of the revised lower 
order model. 

The satisfaction of Eq. (21) may not be realized, however, without a 
further consideration of the lattice geometry. Since 00, 11, 12, and 21 sub- 
lattices are employed in the 2D13VQ model (refer to Fig. 3), O21 is the 
only nonzero parameter for the determination of the sixth-rank velocity- 
moment tensor in the current space dimension, and so is the q~21 for the 
fourth-rank tensor. Now that J21o and J211 would have already been decided 
by the q~pk constraints, there would be no room for them to satisfy those 
Opk constraints appearing in Eq. (21). The solution is to replace the 11 or 
12 sublattice with the 22 sublattice. Parameters such as 021, 022 and ~P21, 
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Fig. 3. Change of the underlying lattice in the revised lower order model. The 2D13VQ 
model uses 00, 11, 12, and 21 sublattices and the 2D13VC model uses 00, 12, 21, and 22 
sublattices. 

~/~22 have nonzero values, so that the satisfaction of  both the ~Opk and Opk 
constraints becomes possible. In this investigation, 00, 12, 21, 22 sublattices 
are employed for the 2D13VC model, as shown in Fig. 3, to take care of  
the balance among particle distributions on different sublattices. With this 
balance, the numerical stability may be better ensured. To explain the 
reason in a intuitive sense, one may assume that the I l sublattice is used 
instead. Now if e and u are very small on a lattice site, most  of  the particle 
density there will be naturally distributed on the 11 lattice because of  the 
small moduli  of  its link vectors, which indicates low flight velocities for the 
particles. On  the other hand, distributions of  particle density on 22 would 
get nearly depleted. In that case, even a very small fluctuation could cause 
the appearance of  negative particle distributions on this sublattice. Negative 
particle distributions will be scattered rapidly by particle propagations,  and 
the numerical instability can be eventually triggered in the calculation; see 
the discussion in ref. 16. 

Calculations with the revised lower order model were performed under 
the same conditions described above. Results for the 2D13VC model and 
the analytical solutions are compared with each other in Fig. 4. It is found 
that  errors are greatly reduced even when the Eckert number  reaches 
infinity. The remaining errors can be recognized as having two parts. The 
first part  is brought  by terms of u 3 or higher order. These errors become 
obvious when the Much number  is too large; see the broken line in Fig. 4. 
The loss of  the symmetry for this line is due to the different local Mach 
numbers distributed across the section. Another  part  of  the error comes 
from the aforementioned anisotropic terms. The behavior of these errors is 
an oscillating one, but small in magnitude. It is known that even the 
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Fig. 4. Temperature profiles in Couette flows obtained by using the revised lower order 
thermal lattice BGK models. Solid lines are analytical solutions, others are the results of 
numerical calculations. 

anisotropic errors can be completely deleted if both the 11 and 12 sublat- 
tices are employed in the 2D13VC model. But this could make the lower 
order model cost the same amount of the computer resource as the higher 
order model does, which is absolutely unfavorable, especially for the three- 
dimensional case where the lower order model could save nearly half "3~ of 
the computer memory consumed by the higher order one. 

3.4. Results of the Higher Order Model  (2D16V)  

It is clear that the lower order thermal lattice BGK models suffer from 
different errors under different conditions. Although they are improvable, 
errors cannot be completely avoided. On the other hand, the higher order 
model was designed to eliminate all these deviations. Here, only the 
calculation for the case of the infinite Eckert number, which was the 
most severe condition for the lower order models, is presented. No 
errors caused by the spurious viscous work or anisotropic terms can be 
observed in the results. Also, from the comparison of the numerical and 
analytical solutions shown in Fig. 5, the parabolic temperature profiles are 
kept well even in the transonic regime, showing that the higher order 
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Fig. 5. Temperature profiles in Couette flows obtained by using the higher order lattice 
BGK model. The solid line is the analytical solution and various symbols are numerical 
results under different Mach numbers. 

thermal lattice BGK model behaves well no matter how the Eckert or the 
Mach numbers change. Nevertheless, the Mach number cannot be so large 
as to violate the prerequisite low-flow-speed and small-Knudsen-number 
( ~  Ma/Re) limits. It was proved t13~ that the deviation terms in the macro- 
scopic momentum equation were removed for the higher order model. The 
calculation carried out here further demonstrates that the modeling of heat 
transfer by using such a model is also advantageous. 

4. C O N C L U D I N G  R E M A R K S  

Through the theoretical and numerical work presented above, the 
behavior of the lattice BGK modeled fluid is shown to be much the same 
as in Navier-Stokes fluids. Nevertheless, such an agreement can only be 
achieved under, the condition that various limitations in the hydrodynamic 
derivation were kept. To apply such models to the simulation of engi- 
neering flows is impractical at this moment. The unchangeable lattice 
resolution, the confined flow speed, and the rather restrictive range for the 
temperature variation, which are inherent properties of such models, 
prevent them from being used to simulate high-Reynolds-number or high- 
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Rayleigh-number flows with appropr ia te  numerical  efficiency compared 
with that of convent ional  macroscopic and cont inuous  methods. However, 
lattice B G K  modeled fluids may be utilized to describe flows on rather small 
scales but  of complicated nature,  such as flows with m o m e n t u m  and heat 
t ransport  in porous media. Before such applications can be realized, the 
validation of the model, especially in three-dimensional  space, is absolutely 
necessary. This study provides some advice for the future explorations and 
validation for these models: If one wants to save computer  resources, espe- 
cially in three-dimensional situations, and does not  care much about  small- 
scale anisotropic errors, it is safe to use the revised lower order thermal 
lattice BGK models in the incompressible regime. On  the other hand,  if 
high accuracy is required, then the higher order model is preferable. When 
flows enter the transonic regime, it is essential to use the higher order 
model, to avoid large deviations in the s imulat ion results. 
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